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The author presents the methods and results of numerical integration
of universal laminar boundary-layer equations (in the one-parameter
approximation) for a gas flow with large velocites, a Prandtl number
equal to unity, and a linear relation between the dynamic viscosity
and temperature,

1, THE UNIVERSAL EQUATIONS IN A ONE-PARAM-
ETER APPROXIMATION

The system of universal equations for the laminar
boundary layer in a high-speed gas flow with arbi-
trary outer velocity uj (x), arbitrary ratio of body
to free-stream temperature Ty, /T, and Prandtl
number equal to unity is, in the one-parameter ap-
proximation [1, 2],

Fo F +2f; f o \?
FERT °az'+ [“’ (as)]"
1 aQ AP i® Fo
=—Ff1( e );

R W TP afl ot
?S  F+ g

op 28 ag

=L Fp, ("0 ‘E_‘L"QE).
B dat o, ofy 0t
a0 .
i0 )
r Tl S=0 at foos
o= 00 (E)r S= So (%) when f1 = Q. (1)

The unknown functions ®(¢,f;) and S(¢,f,) are the
"reduced® stream function and heat function, defined
as

©=BY/(V,4*%), S =hyhy— 1. (2)

The independent variables in (1) are
E = BY/A** 3)
and the basic boundary-layer shape parameter
fr= (dV/dX) A***/v,,. 4)

Here we use the following notation: A** = j T‘/I—( 1—
!

--V—) dY —transformed momentum thickness; X, Y,

1
V~coordinates and velocity transformed by the Doro-

dnitsyn-Stewartson transformation [3]; V; —~trans-
formed outer-flow velocity; ¥—transformed stream

function; hy and hy; —total enthalpy inside the boun-
dary layer and of the outer flow, respectively; vy] —
kinematic viscosity corresponding to stagnation con~
ditions in the outer flow.

The normalization constant B is determined from
the condition that for f; = 0 system (1) should reduce
to the corresponding system of equations for a semi-
infinite plate in parallel flow (the dot denotes differ-
entiation with respect to £):
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Taking into account that in the general case (A* =

-— 5' (l +S— VL) dY is the transformed displacement
1

thickness)
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we have

B = (ﬁo (0).

2, METHOD OF INTEGRATION OF SYSTEM (1)

The system of equations (1) was integrated on the
BESM-2 computer of the Leningrad Computing Center
of the Academy of Sciences USSR for the following
values of the parameter S -0.6; ~0.4; -0.2; 0.2;
0.4. The method of integration of the universal equa-

tion for the case Sy, = 0 has been discussed by
Simuni and Terent'ev [4]. Introducing the notation
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we rewrite system (1) in the form
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(D = CDO(E)V U=, (2)7 V=1 (g)l
S = Sy(¢) when f;, = 0. (5)

System (5) was approximated by the finite-difference
scheme (the indices i and k refer to fixed values of
f1 and &, respectively)

Uit gt ™ 21 + Ui g +

AE?

+ F 420 ) d)i.kum“_ ui.k—l f\ lSzk
28 ) 2AE

Uitrp — Ui +

(g — D) (g + 1) =%2(Ff1>, (u v

Ujpog — U
+ U —*‘"‘—‘—I'NIQA‘M 1) ;
S

_ AE [ it — Uikt i1~ Wi} .
Uiyl ksl = Uiyt — 5 A + AT )
1 1
At
D100 = g + > (U1 ket T+ g 0)s

Sic-l,k-rl'— QSHl.fz + Si+1‘k~1 4
AE?

F+2 Sppt— Sipe
+ ( o5 f1 ):D“l,k ikl k=1 __

%‘Z(fo)‘ (uiﬂ.k Si+l,k——si.k 4+ Uitk S[.k+1 "'Si -k'l);

Af ' 2A%
Dio=uo=0,,=0;, S,=S, at & =0

u‘-‘@=1; SLQSO at E,z@;
Do, = Dy (E) Uop = w(E) oy = o (E):
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Here A¢ and Af, are the steps in the direction of ¢
and f,, respectively.

System (6) was solved by the double sweep method
[5]. In the f, direction the calculation extended up to
the separation point in the expansion region and up
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to the forward stagnation point in the compression
region. The outer boundary of the boundary layer was
assumed to be at £ = 6, The step size of A was 0.05.
The step size in the f| direction was chosen so that
the differences between the values of the basic boun-
dary-layer variables calculated with full steps and
with half-size steps was less than one or two units

in the fourth significant figure. Thus the step size
varied between &f, = 5 - 107° and Af, = 0.3125 - 107"

3. NUMERICAL RESULTS

Figure 1 shows curves of the dimensionless
velocity V/V; =u/u; = 8%/9¢ and the heat function
S as functions of ¢ for several values of the shape
factor f; and Sy = 0.4. Figs. 2—4 show curves of the
friction parameter ¢, the functions H and F, the
function &, which characterizes the deflection of the
T curve from its tangent at the pointf; = 0, and the
reduced heat-transfer coefficient ¢ * = B(88/9¢ )g =0
as functions of the shape factor f, for S, equal to
-0.4 and 0.4.

Figure 2 shows that in the compression region of
the boundary layer the friction on a cooled wall is
less than on a heated wall. In the expansion region
the effect is opposite, This effect is due to the change
of density of the gas inside the layer due to the wall
temperature.

The effect of the parameter Sy on some properties
of the boundary layer at the separation point (fisep
and {g%p) can be seen from Fig. 5. An increase of
Sw (i.e. a transition from cooling to heating) results
in an earlier separation of the boundary layer. Fig-
ure 5 also shows that an increase in the absolute
value of 8y, results in an increase of the absolute
value of the reduced heat-transfer coefficient at the
separation point, this effect being stronger in the
case of heating than in the case of cooling,

In addition to the numerical solution of system (1),
this system was also represented in terms of a series
of the shape factors f,==VA='ViR %%t (k=12 . ;
= A#E2yy ). Starting from the one-parameter solution
(¢ (1) H®, F(M, and ¢M1), obtained numerically by
means of a computer, the effect of the subsequent
parameters is found to be (we give here only the ex-
pansions for Sy, = ~0.4 and Sy, = 0.4):

for S, = — 0.4
o= — 0.213f — 0.013f,f2 + 0.068f5 + ... ;
H = HO + 1.720f, + 7.418f,f, — 0.822f + ... ;
F = FO) —0.426f, — 3.466f,f2 + 0.136f; + ... ;

F = L) 4 0.066f, + 0.894f,f» — 0.044f, + ... ;
for S,=04
L=1" —0.385f + ... :
H = H 1+ 0.806f, - ... ;
F=FHY—0.770f 4+ ... :
o= 150 — 0.1 14f, + ...
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Fig. 1, Variation of the dimen-~
sionless velocity (a) and heat
function (b) across the bound-
ary layer in the case Sy = 0.4:
1)f1=0;2)f;==0.05;3)f, =

= -0,0646.
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Fig. 3. Variation of F and ¢ with
the shape factor f;: 1 and 2) F
and FcpR for Sy, =~0.4;3) F for
Sw=04;4and5) € for Sy = -0.4

and Sy, = 0.4.
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Fig. 2. Variation of the friction
parameter ¢ and the parameter
H with the shape factorf;: 1 and 2)

¢t and R for 8y, =-0.4;3) ¢

for Sy = 0.4; 4 and 5) H and Hpogr
for 8y, = ~0.4; 6) H for Sy = 0.4.
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Fig. 4. Variation or the reduced heat-
transfer coefficient ¢ * (on the ordinate
axis) with the shape factor f, (abscissas):
1 and 2) ¢* and {CR for Sy, = 0.4;3) ¢*
for Sy = 0.4.
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At the present time work is in progress on the
approximate integration (in the one-parameter approx-
imation) of the universal equations of the laminar
boundary layer in a flow of homogeneous gas with
Prandtl number equal to 0.72. However, even the
present results for Pr = 1 are quite valuable, since
it has been shown in [6, 7] that the effect of the
Prandtl number on the dynamic characteristics of a
boundary layer is practically insignificant.

4. COMPARISON OF THE ONE-PARAMETER METHOD
OF SOLUTION OF THE BOUNDARY LAYER WITH
THE METHOD OF COHEN AND RESHOTKO [8]

Assuming all derivatives with respect to f; in
(1) as equal to zero, we obtain a system of ordinary
differential equations, with f; as parameter. As is
well known, the problem of a boundary layer in a
high-speed gas {low becomes self-similar when the
transformed velocity of the outer flow is given as
a power function of the length coordinate (C and m
are constants)

V, = CX™
Introducing the expressions
fi= ﬁBZ’

we can write the above system of differential equ-
ations in the form

F=2B*(1 —B), p=2m/(m + 1),

iﬁ+¢)@=ﬁ(®2—l—8),
Sta$=o0. 0

This system is equivalent to the equations which
have been obtained by Stewartson [3] and integrated
by Cohen and Reshotko [9]. Using the class of exact
solutions, these authors have proposed an approxi-
mate method of calculation of the boundary layer [8].

From what we have said above it follows that the
method of Cohen and Reshotko can give satisfactory
results only in those cases in which the derivatives
of the unknown functions with respect to f; are rela-
tively small. This assumption holds in the compres-
sion region of the boundary layer. However, near the
separation point of the boundary layer the effect of the
derivatives with respect to f; increases (see, e.g.,
Fig. 1) and the Cohen-Reshotko method does not lead
to satisfactory results.

Figures 2—4 show in broken lines the curves of
tcr Her Fope 2nd gER, calculated by the
Cohen-Reshotko method. The results obtained by
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Fig. 5. The effect of the parameter

Sw on the shape factor figep and the

reduced heat-transfer coefficient

ggep at the separation point of the
boundary layer.

this method yield lower friction values in the ex-

pansion region and premature separation.
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